Comparative binding energy analysis of haloalkane dehalogenase substrates: Modelling of enzyme-substrate complexes by molecular docking and quantum mechanical calculations
نویسندگان
چکیده
We evaluate the applicability of automated molecular docking techniques and quantum mechanical calculations to the construction of a set of structures of enzyme-substrate complexes for use in Comparative binding energy (COMBINE) analysis to obtain 3D structure-activity relationships. The data set studied consists of the complexes of eighteen substrates docked within the active site of haloalkane dehalogenase (DhlA) from Xanthobacter autotrophicus GJ10. The results of the COMBINE analysis are compared with previously reported data obtained for the same dataset from modelled complexes that were based on an experimentally determined structure of the DhlA-dichloroethane complex. The quality of fit and the internal predictive power of the two COMBINE models are comparable, but better external predictions are obtained with the new approach. Both models show a similar composition of the principal components. Small differences in the relative contributions that are assigned to important residues for explaining binding affinity differences can be directly linked to structural differences in the modelled enzyme-substrate complexes: (i) rotation of all substrates in the active site about their longitudinal axis, (ii) repositioning of the ring of epihalohydrines and the halogen substituents of 1,2-dihalopropanes, and (iii) altered conformation of the long-chain molecules (halobutanes and halohexanes). For external validation, both a novel substrate not included in the training series and two different mutant proteins were used. The results obtained can be useful in the future to guide the rational engineering of substrate specificity in DhlA and other related enzymes.
منابع مشابه
Identification of substrate binding sites in enzymes by computational solvent mapping.
Enzyme structures determined in organic solvents show that most organic molecules cluster in the active site, delineating the binding pocket. We have developed algorithms to perform solvent mapping computationally, rather than experimentally, by placing molecular probes (small molecules or functional groups) on a protein surface, and finding the regions with the most favorable binding free ener...
متن کاملQuantitative analysis of substrate specificity of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26.
Haloalkane dehalogenases are microbial enzymes that cleave a carbon-halogen bond in halogenated compounds. The haloalkane dehalogenase LinB, isolated from Sphingomonas paucimobilis UT26, is a broad-specificity enzyme. Fifty-five halogenated aliphatic and cyclic hydrocarbons were tested for dehalogenation with the LinB enzyme. The compounds for testing were systematically selected using a statis...
متن کاملExploring the structure and activity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26: evidence for product- and water-mediated inhibition.
The hydrolysis of haloalkanes to their corresponding alcohols and inorganic halides is catalyzed by alpha/beta-hydrolases called haloalkane dehalogenases. The study of haloalkane dehalogenases is vital for the development of these enzymes if they are to be utilized for bioremediation of organohalide-contaminated industrial waste. We report the kinetic and structural analysis of the haloalkane d...
متن کاملMechanism of enhanced conversion of 1, 2, 3-trichloropropane by mutant haloalkane dehalogenase revealed by molecular modeling
1,2,3-Trichloropropane (TCP) is a highly toxic, recalcitrant byproduct of epichlorohydrin manufacture. Haloalkane dehalogenase (DhaA) from Rhodococcus sp. hydrolyses the carbon-halogen bond in various halogenated compounds including TCP, but with low efficiency (k (cat)/K (m )= 36 s(-1) M(-1)). A Cys176Tyr-DhaA mutant with a threefold higher catalytic efficiency for TCP dehalogenation has been ...
متن کاملBiochemical and structural characterisation of a haloalkane dehalogenase from a marine Rhodobacteraceae.
A putative haloalkane dehalogenase has been identified in a marine Rhodobacteraceae and subsequently cloned and over-expressed in Escherichia coli. The enzyme has highest activity towards the substrates 1,6-dichlorohexane, 1-bromooctane, 1,3-dibromopropane and 1-bromohexane. The crystal structures of the enzyme in the native and product bound forms reveal a large hydrophobic active site cavity....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computer-aided molecular design
دوره 17 5-6 شماره
صفحات -
تاریخ انتشار 2003